
The HTTP Protocol

Page 1
Copyright © 2006 illustro Systems International, LLC. All rights reserved.

Copyright © 2005 illustro Systems International, LLC

WAVV 2006
Chattanooga, TN

Understanding the HTTP
Protocol

WAVV 2006

Chuck Arney
illustro Systems International LLC
carney@illustro.com

WAVV2006-2Copyright © 2006 illustro Systems International, LLC

Handouts

Download a copy of this presentation

http://www.illustro.com/conferences

WAVV2006-3Copyright © 2006 illustro Systems International, LLC

Agenda

What is the HTTP protocol?
Uses for HTTP
Uniform Resource Locators
MIME
Structure of an HTTP Transaction
HTTP Methods

The HTTP Protocol

Page 2
Copyright © 2006 illustro Systems International, LLC. All rights reserved.

WAVV2006-4Copyright © 2006 illustro Systems International, LLC

Agenda

Persistent Connections
Content Negotiation
Conditional Requests
Proxy Servers
Caching
Resources
Web 2.0

WAVV2006-5Copyright © 2006 illustro Systems International, LLC

What is the HTTP Protocol?

HTTP is the acronym for Hypertext
Transfer Protocol
Application level protocol

Same level as protocols such as FTP &
SMTP

Request/Response processing model
Stateless protocol

WAVV2006-6Copyright © 2006 illustro Systems International, LLC

What is the HTTP Protocol?

Bi-directional data transfer
(TCP Sockets)
Support for negotiation, caching &
proxies

The HTTP Protocol

Page 3
Copyright © 2006 illustro Systems International, LLC. All rights reserved.

WAVV2006-7Copyright © 2006 illustro Systems International, LLC

Uses for HTTP

The World Wide Web, of course
XML Web Services (SOAP)
Control network devices such as
routers and printers
Actually –

Any application requiring a
Request/Response processing model

WAVV2006-8Copyright © 2006 illustro Systems International, LLC

URI, URL, URN

URI, Universal Resource Identifier (RFC
2396)

Identifies a resource by name, location or
other characteristic
Can be

URL, Universal Resource Locator
URN, Universal Resource Name

WAVV2006-9Copyright © 2006 illustro Systems International, LLC

Dissecting a HTTP URL

http://www.domain.com:80/dir/file?a=3&b=1
^--- protocol

^----------------------------------- host
^--------------- port

^------------ path
^---- query

string

The HTTP Protocol

Page 4
Copyright © 2006 illustro Systems International, LLC. All rights reserved.

WAVV2006-10Copyright © 2006 illustro Systems International, LLC

MIME

Multipurpose Internet Mail Extensions
RFC 2045, November 1996 (part 1)

Defines standards for text message
formats and character sets

Including many of the message headers
used in HTTP messages

HTTP messages are “MIME-like” but not
completely MIME compliant

WAVV2006-11Copyright © 2006 illustro Systems International, LLC

Structure of an HTTP Transaction

The client opens a
connection and
sends a request
message to an HTTP
server

The client receives
and process the
received data

The server returns a
response message,
usually containing
the resource that
was requested

WAVV2006-12Copyright © 2006 illustro Systems International, LLC

The request/response format

The format of the request and of the
response are very similar
Both messages are organized as

First line
Headers (optional)
Empty line
Body (optional)

The HTTP Protocol

Page 5
Copyright © 2006 illustro Systems International, LLC. All rights reserved.

WAVV2006-13Copyright © 2006 illustro Systems International, LLC

The request/response format

More graphically…

<initial line, different for request & response>
Header1: value
Header2: value
Header3: value

<optional message body goes here, like file contents or
query data; it can be many lines long, or even binary
data>

WAVV2006-14Copyright © 2006 illustro Systems International, LLC

The request/response format
Initial Request Line

A request line has three parts,
separated by spaces:

a method name
the local path of the requested resource
the version of HTTP being used

WAVV2006-15Copyright © 2006 illustro Systems International, LLC

The request/response format
Initial Request Line

Example

GET /path/to/file/index.html HTTP/1.1

GET is the most common HTTP method
Method names are always uppercase

The path is part of the URL after the host
name
The HTTP version always takes the form
"HTTP/x.x", uppercase

The HTTP Protocol

Page 6
Copyright © 2006 illustro Systems International, LLC. All rights reserved.

WAVV2006-16Copyright © 2006 illustro Systems International, LLC

The request/response format
Initial Response Line

Initial response line is called the Status line
and also has three parts separated by spaces

the HTTP version
a response status code that gives the result of the
request
an English reason phrase describing the status code
Typical status lines are:

HTTP/1.1 200 OK or
HTTP/1.1 404 Not Found

WAVV2006-17Copyright © 2006 illustro Systems International, LLC

The request/response format
Initial Response Line

The status code is meant to be computer-readable
It is a three-digit integer, and the first digit identifies the
general category of response:

1xx indicates an informational message only
2xx indicates success of some kind
3xx redirects the client to another URL
4xx indicates an error on the client's part
5xx indicates an error on the server's part

The most common status codes are:
200 OK
404 Not Found

The reason phrase is meant to be human-readable, and
may vary by server

WAVV2006-18Copyright © 2006 illustro Systems International, LLC

The request/response format
Header Lines

Header lines provide information about
the request or response, or about the
object sent in the message body
Header lines are in the text header
format

one line per header
of the form “Header-Name: value”
ending with CRLF

The HTTP Protocol

Page 7
Copyright © 2006 illustro Systems International, LLC. All rights reserved.

WAVV2006-19Copyright © 2006 illustro Systems International, LLC

The request/response format
The Message Body

An HTTP message may have a body of
data sent after the header lines
In a request, this is where user-entered
data or uploaded files are sent to the
server
In a response, this is where the
requested resource is returned to the
client

WAVV2006-20Copyright © 2006 illustro Systems International, LLC

The request/response format
The Message Body

If an HTTP message includes a body,
there are usually header lines in the
message that describe the body

Content-Type: header gives MIME-type of
the data in the body, such as text/html or
image/gif
Content-Length: header gives the
number of bytes in the body

WAVV2006-21Copyright © 2006 illustro Systems International, LLC

The request/response format
Sample HTTP Exchange

To retrieve the file at the URL

http://www.somehost.com/path/file.html

Send a request to www.somehost.com
like:

GET /path/file.html HTTP/1.1
User-Agent: HTTPTool/1.1
[empty line here]

The HTTP Protocol

Page 8
Copyright © 2006 illustro Systems International, LLC. All rights reserved.

WAVV2006-22Copyright © 2006 illustro Systems International, LLC

The request/response format
Sample HTTP Exchange

The server should respond on the same
connection with something like

HTTP/1.1 200 OK
Date: Sat, 08 Apr 2006 23:59:59 GMT
Content-Type: text/html
Content-Length: 1354

<html> <body> <h1>Web Page</h1>
(more file contents) . . .
</body> </html>

After sending the response, the server may
close the connection

WAVV2006-23Copyright © 2006 illustro Systems International, LLC

HTTP Methods

The methods that can be used on a
request are

GET, request a document be returned
POST, sends data to server and receives
result
HEAD, requests a document headers only
PUT, upload new document
DELETE, delete an object
Plus a few others

WAVV2006-24Copyright © 2006 illustro Systems International, LLC

HTTP Methods
POST Method

A POST request is used to send data to
the server to be processed in some
way, like by a CGI script
Different from a GET request in that

a block of data sent with the request, in the
message body
Extra headers to describe message body

Content-Type:
Content-Length:

The HTTP Protocol

Page 9
Copyright © 2006 illustro Systems International, LLC. All rights reserved.

WAVV2006-25Copyright © 2006 illustro Systems International, LLC

HTTP Methods
POST Method

Different from a GET request in that…
request URI is not a resource to retrieve;
it's usually a program to handle the data
you're sending
HTTP response is normally program output,
not a static file

The most common use of POST is to
submit HTML form data to CGI scripts

WAVV2006-26Copyright © 2006 illustro Systems International, LLC

Persistent Connections

HTTP 1.0 used a connection for only
one request/response
HTTP 1.1 uses persistent connections
by default

Connection: header can be Keep-Alive or
Close
Multiple requests/responses can be handled
over one connection
Requests can be pipelined

WAVV2006-27Copyright © 2006 illustro Systems International, LLC

Content Negotiation

Used to select “Best” response for a
request

Server-driven negotiation
Agent-driven negotiation
Transparent negotiation

Server-driven negotiation normally
used

The HTTP Protocol

Page 10
Copyright © 2006 illustro Systems International, LLC. All rights reserved.

WAVV2006-28Copyright © 2006 illustro Systems International, LLC

Content Negotiation
Server‐Driven

User agent provides a list of preferences
Accept Media types
Accept-Language Text languages
Accept-Encoding Content encoding
Accept-Charset Character sets

Server decides “Best” resource from those
available
Vary header may be returned to tell caches
what request headers used to make decision

WAVV2006-29Copyright © 2006 illustro Systems International, LLC

Content Negotiation
Agent‐Driven

Server returns status code 300
Multiple Choices and list of available
resources
User-agent decides which one is “Best”
and issues new request for it
Requires multiple trips to the server

WAVV2006-30Copyright © 2006 illustro Systems International, LLC

Content Negotiation
Transparent

Combination of server-driven and
agent-driven when the resource is
cached
When a cache contains the possible
resources and is aware of the
variances, it can provide the server-
driven selection
Offloads work from the server

The HTTP Protocol

Page 11
Copyright © 2006 illustro Systems International, LLC. All rights reserved.

WAVV2006-31Copyright © 2006 illustro Systems International, LLC

Conditional Requests

Optional request headers can be
included to make a request conditional

If-Modified-Since/If-Unmodified-Since
Compares date and time (Date: header)

If-Match/If-None-Match
Compares entity tags (ETAG: header)

WAVV2006-32Copyright © 2006 illustro Systems International, LLC

Conditional Requests

When specified condition is true, server
returns requested resource
When condition is not true, a status
code is returned with no message-body

304 Not Modified
412 Precondition Failed

WAVV2006-33Copyright © 2006 illustro Systems International, LLC

Proxy Servers

The HTTP protocol specification
provides specific support for proxy
servers
Proxy servers are both a client and a
server

Accept requests from other clients
Forward the request to a server (or another
proxy)
Cache the response
Respond to the original client

The HTTP Protocol

Page 12
Copyright © 2006 illustro Systems International, LLC. All rights reserved.

WAVV2006-34Copyright © 2006 illustro Systems International, LLC

Proxy Servers

Or, they respond immediately with a
cached page instead of sending the
request over the Internet
Clients must be configured to use a
proxy

The client connects to the proxy instead of
the host specified in the URL
The request must specify the Absolute-URI
instead of the Request-URI

WAVV2006-35Copyright © 2006 illustro Systems International, LLC

Proxy Servers

Headers specifically for proxies
Proxy-Authorization:
Proxy-Authenticate:
Max-Forwards:
Via:

WAVV2006-36Copyright © 2006 illustro Systems International, LLC

Caching

Caching of resources can be done by a
cache server (proxy), the HTTP client,
or both
The goal of caching in HTTP is to:

Eliminate the need to send requests
Reduce the number of trips to the server
Uses an expiration mechanism

Eliminate the need to send full responses
Reduce network bandwidth requirements
Uses a validation mechanism

The HTTP Protocol

Page 13
Copyright © 2006 illustro Systems International, LLC. All rights reserved.

WAVV2006-37Copyright © 2006 illustro Systems International, LLC

Caching

Cached resources are either “Fresh” or
“Stale”

Based on Age and freshness lifetime
The HTTP specification defines formulas
to calculate age and freshness
Stale documents must be “validated”
with the server using:

Last-modified date (IF-Modified-Since)
ETag (If-None-Match)

WAVV2006-38Copyright © 2006 illustro Systems International, LLC

Caching

Stale resources returned to a client
must have the Warning: header added
Caching is controlled by

Cache-Control: header
Expires: header
Date: header
ETag: header

WAVV2006-39Copyright © 2006 illustro Systems International, LLC

Caching
Cache‐Control: Header

For requests
no-cache
no-store
max-age = seconds
max-stale = seconds
min-fresh = seconds
only-if-cached

The HTTP Protocol

Page 14
Copyright © 2006 illustro Systems International, LLC. All rights reserved.

WAVV2006-40Copyright © 2006 illustro Systems International, LLC

Caching
Cache‐Control: Header
For responses

public
private
no-cache
no-store
no-transform
must-revalidate
proxy-revalidate
max-age = seconds

WAVV2006-41Copyright © 2006 illustro Systems International, LLC

Resources

HTTP/1.1 RFC 2616, June 1999
Replaces RFC 2068, January 1997

HTTP/1.0 RFC 1945, May 1996
MIME RFC 2045, November 1996
World Wide Web Consortium

www.w3c.org
News, updates, drafts, reports

HTTP Made Really Easy, tutorial
www.jmarshall.com/easy/http/

WAVV2006-42Copyright © 2006 illustro Systems International, LLC

Web 2.0
Future of the World Wide Web

Assumes everything up to now was 1.0

It’s all about performance and the user
experience

1.0
For every server interaction we wait for an
entirely new web page to load
Nothing can be done with the current page while
we wait for the new page

The HTTP Protocol

Page 15
Copyright © 2006 illustro Systems International, LLC. All rights reserved.

WAVV2006-43Copyright © 2006 illustro Systems International, LLC

Web 2.0

It’s all about performance and the user
experience…

2.0
Asynchronous server requests made in
background
User interface on current page continues to

function

Much more of the application code
resides in the web page in the form of
scripting instead of being on the server

WAVV2006-44Copyright © 2006 illustro Systems International, LLC

Web 2.0

Uses Asynchronous JavaScript and XML
(Ajax)

Phrase coined by Jesse James Garrett of
Adaptive Path

JavaScript XMLHttpRequest method
used to make asynchronous requests to
same server from which web page was
retrieved
Call back JavaScript function handles
result data when it arrives

WAVV2006-45Copyright © 2006 illustro Systems International, LLC

Web 2.0

Dynamic HTML used to update existing
web page instead of entirely replacing
it with a new page
User interface in existing page
continues to be active while
background requests are made
User experience is more like a desktop
application than a web application

The HTTP Protocol

Page 16
Copyright © 2006 illustro Systems International, LLC. All rights reserved.

WAVV2006-46Copyright © 2006 illustro Systems International, LLC

Web 2.0

In spite of the method name, the
received data can be any format the
JavaScript is prepared to handle

HTML
Plain text with delimiters
XML documents processed with DOM

WAVV2006-47Copyright © 2006 illustro Systems International, LLC

Web 2.0 Resources

IBM Developerworks web site, multi-
part Ajax article

http://www-
128.ibm.com/developerworks/web/library/
wa-ajaxintro1.html?ca=dgr-
lnxw01MasterAJAX

AJAX World Magazine
http://ajax.sys-con.com

Google for AJAX or WEB 2.0 for
additional information

